Hjem, skøre hjem

Anmeldelse af “Hjemme igen, hjemme igen”, af Cory Doctorow. Novelle. 2024. Så fremmed et sted.

Skitse: Som 10-årig bor Chet i Stærekassen, sammen med alle de andre, som uransagelige rumvæsner har vurderet til at have pip. Der er skole, samtaler med en udenjordisk vejleder og besøg hos en fyr, der bl.a. har et stort akvarium med koraller og fisk.

Er det science fiction? Ja.

Temaer: Chets forældre må altså have pip, mindst en af dem, men de ved ikke hvilken, og det er ikke godt for den mentale sundhed at havne i den her kategori. Ham med akvariet er heller ikke helt jordbunden. Håbet er, at Chet har en bedre fremtid. Der er i øvrigt system i galskaben. Efter en generation vil stærekasserne blive nedlagt igen, fordi der ikke længere er behov for dem.

Sideløbende følger vi den noget ældre Chet, der har været ude i universet, men nu er kommet hjem igen. Hans bedre fremtid indeholdt selv at blive vejleder.

Fyren med akvariet tror, at han er Tesla. Det kommer du ikke til at glemme et sekund under læsningen! 👎🏻

Synspunktet skifter mellem 1. og 3. person. Tja. Skiftene er ret bratte.

Kan elektricitet virkelig som her beskrevet?

Er det godt? 👽👽👽

Moderskibet skygger

Anmeldelse af “Skyggen af moderskibet”, af Cory Doctorow. Novelle. 2024. Så fremmed et sted.

IMG_20241209_035706

Skitse: En ny kult jager lykken og bygger huse af hærdet skum. Da rumvæserne ankommer, er det kultens leder, der bliver inviteret op på moderskibet og taget med på en lille udflugt. Hvad siger man så, som lederens efterladte søn Maxes?

Er det science fiction? Jeppe-depper.

Temaer: Ikke uventet er livet kaotisk, både for alle Jordens beboere generelt og Maxes helt specifikt. Skrivestilen afspejler det: Store hop i tid, store forandringer.

Er det godt? Jeppe-depper. 👽👽👽

#ThisWeeksFiddler, 20250502

This week the #puzzle is: How Many Rides Can You Reserve? #probabilities #random

I was recently a guest at Disney World, which has a new system called “Lightning Lane” for reserving rides in advance—for a fee, of course.
By purchasing “Lightning Lane Multi Pass,” you can reserve three of the many rides in a park, with each ride occurring at a different hourlong time slot. For simplicity, suppose the park you’re visiting (let’s say it’s Magic Kingdom) has 12 such time slots, from 9 a.m. to 9 p.m. So if you have the 3 p.m. time slot for a ride, then you can skip the “standby lane” and board the much shorter “Lightning Lane” at any point between 3 and 4 p.m. Assume you can complete at most one ride within each hourlong time slot.
Once you have completed the first ride on your Multi Pass, you can reserve a fourth ride at any time slot after your third ride. This way, you always have at most three reservations. Similarly, after you have completed your second ride, you can reserve a fifth ride at any time slot after your fourth, and so on, up until you are assigned a ride at the 8 p.m. (to 9 p.m.) time slot. That will be your final ride of the day.
Magic Kingdom happens to be very busy at the moment, and so each ride is randomly assigned a valid time slot when you request it. The first three rides of the day are equally likely to be in any of the 12 time slots, whereas subsequent rides are equally likely to occur in any slot after your currently latest scheduled ride.
On average, how many rides can you expect to “Lightning Lane” your way through today at Magic Kingdom?

And for extra credit:

If you’re a Disney aficionado, then you know that week’s Fiddler is in fact an oversimplification of how Lightning Lane actually works. Let’s make things a little more realistic.
This time around, after you complete the first ride on your Multi Pass, you can reserve a fourth ride at any time slot after your first ride (rather than after your third ride). Similarly, after you have completed your second ride, you can reserve a fifth ride at any time slot after your second, and so on, until there are no available time slots remaining.
As before, the first three rides of the day are equally likely to be in any of the 12 time slots, whereas subsequent rides are equally likely to occur in any remaining available slots for the day.
On average, how many rides can you expect to “Lightning Lane” your way through today at Magic Kingdom?

Highlight to reveal (possibly incorrect) solution:

Program 1. Program 2. Spreadsheet.

And for extra credit:

Mark Martinsens mærke

Anmeldelse af “Billy Baileys rebranding”, af Cory Doctorow. Novelle. 2024. Så fremmed et sted.

IMG_20241209_035706

Skitse: Billy har været noget af en rod siden børnehaven, men hævn over Mitchell kræver en anden profil. Lad forhandlingerne med agenter og sponsorer begynde.

Er det science fiction? Ja, det er det vel egentlig. En fremtid med mere aggressive reklamer.

Temaer: Billy er helt klart intelligent, og selvom der er voksne omkring ham, så træffer han selv beslutningerne.

Er det godt? Jeps. Også lidt sjovt. 👽👽👽

Verdens mindste geni

Anmeldelse af “Verdens største fjols”, af Cory Doctorow. Novelle. 2024. Så fremmed et sted.

IMG_20241209_035706

Skitse: Verdens klogeste mand har løst en masse opgaver, mens en computer har kigget med. Således kan man lave en chip, der kan gøre en anden mand lige så klog.

Er det science fiction? Ja.

Temaer: Hvad er klogskab egentlig? Kan den kloge kontrolleres af den mindre kloge?

Er det godt? Jeps. Tilfredsstillende afslutning. 👽👽👽

Stedfremmed

Anmeldelse af “Så fremmed et sted”, af Cory Doctorow. Novelle. 2024. Så fremmed et sted.

IMG_20241209_035706

Skitse: Som 10-årig flytter vores hovedperson, James, til 1975 fra Utah. Utah i 1898 altså.

Er det science fiction? Ja.

Temaer: 1975 er ikke helt, som det skal være i vores øjne. Futuristiske materialer, transportformer, undervisning osv. Kontakt mellem årstallene bliver overvåget og kontrolleret, men åbenlyst er der stadig ting, der slipper igennem. I øvrigt er James’ far ambassadør.

James har et liv i 1898 og frem, der dog rammer 70’erne af og til. Der er lidt drama. At far en dag ikke kommer hjem fra arbejde. At mor efter noget tid finder en ny mand. At James’ lærer har en spændende baggrund og en interessant tilgang til James’ skolegang.

Der er lidt fnidder her med mangel på kolon før anførselstegn, men hvis jeg husker ret, så har den originale tekst noget lignende. Til gengæld er oversættelsen i sig selv rigtig god, ligesom i resten af bogen.

Er det godt? Jeps. 👽👽👽

Pokkers køter

Anmeldelse af “Møghund”, af Cory Doctorow. Novelle. 2024, dog også tidligere 2015. Så fremmed et sted.

IMG_20241209_035706

Skitse: Jerry tjener bl.a. penge på at købe genstande billigt på loppemarkeder og sælge dem på auktion. Han er rigtig gode venner med Møghund, et rumvæsen, der primært samler. Indtil de har et sammenstød over en samling cowboyting for børn.

Er det science fiction? Jeps.

Temaer: Der findes jo alle slags personer, så hvorfor dog ikke også en, der støvsuger loppemarkeder for guf?

Og hvorfor skulle sådan en ikke kunne være et rumvæsen? Der normalt handler med væsentlige dyrere produkter, men det andet kan jo være en hobby. Der er et interessant fænomen her, hvor et menneske kommer i øjenhøjde med det fremmede.

Er det godt? Jeps. De ganske få tråde samles tilfredsstillende. 👽👽👽

Note: Jeg har et blødt punkt for Doctorow, så jeg giver selvfølgelig også gode karakterer til hans historier.

#ThisWeeksFiddler, 20250425

This week the #puzzle is: Can You See Between the Trees? #geometry

You are at the point (0, 0) on the coordinate plane. There is a tree at each point with nonnegative integer coordinates, such as (5, 6), (0, 7), and (9, 1). The trees are very thin, so that they only obstruct trees that are directly behind them. For example, the tree at (2, 2) is not visible, as it is obscured by the tree at (1, 1).
Now, you can’t see infinitely far in this forest. Suppose, for example, that the farthest you can see is 4 units. The diagram below shows the trees you would see and the angles between them:
In truth, you can see much farther than 4 units into the forest. You’re not sure exactly how far you can see, but it’s pretty dang far. To be extra clear about this, the diagram above is just an illustration, and you can in fact see much farther than 4 units.
As you look around, you can make out very narrow angular gaps between the trees. The largest gaps are near the positive x-axis and the positive y-axis (similar to the illustrated case above). After those, the next largest pair of gaps are on either side of the tree at (1, 1), 45 degrees up from the x-axis.
Consider the view between 0 and 45 degrees up from the x-axis. The next largest pair of adjacent gaps in this range are on either side of what angle up from the x-axis? (To be clear, you are not considering the gap just above 0 degrees or the gap just below 45 degrees.)

And for extra credit:

The fifth largest pair of adjacent gaps in this range are on either side of what angle up from the x-axis? (Again, you are not considering the gap just above 0 degrees or the gap just below 45 degrees.)

Highlight to reveal (possibly incorrect) solution:

Program. Spreadsheet.

And for extra credit:

Doomsday Book, notes

I’ve recently read Doomsday Book, Connie Willis. These notes are about an aspect of the book, I didn’t really like. Spoilers.

Of course it’s drama and conflict. Of course our hero wants something and can’t get it right away. It’s the obstacles I, ahem, stumble over.

You can’t get what you want:

  • Because you fell ill. Really ill.
  • Because somebody else fell ill. Really ill.
  • Because a lot of people fell ill and quarantine rules apply.
  • Because somebody else has to authorise it, and they are on vacation for 2 weeks and impossible to find.
  • Because somebody else has to authorise it, and they are arrogant and won’t listen to reason. (*)
  • Because your question (or the answer) isn’t understood correctly.
  • Because you talking to the other relevant person Just Isn’t Done, and you can’t figure out a way to do it in secret.
  • Because your sense of duty says you should do something else.
  • Because a 5 year old is being 5 and spoiled.
  • Because a 12 year old is trying to stay away from that creepy guy.
  • Because young people just don’t listen. (*)
  • Because this one person is suspicious and schizophrenic and generally angry and negative. (*)
  • Because this one person is overly protective of her son. (*)
  • Because this one person thinks cheering up = listening to horrible Bible stories. (*)

The (*) means this rubs me the wrong way. Stupid, irrational people not listening. It’s supposed to be funny? Instead it bores me. And it happens a lot.

#ThisWeeksFiddler, 20250418

This week the #puzzle is: Can You Throw the Hammer? #probabilities #game

You and your opponent are competing in a golf match. On any given hole you play, each of you has a 50 percent chance of winning the hole (and a zero percent chance of tying). That said, scorekeeping in this match is a little different from the norm.
Each hole is worth 1 point. Before starting each hole, either you or your opponent can “throw the hammer.” When the hammer has been thrown, whoever did not throw the hammer must either accept the hammer or reject it. If they accept the hammer, the hole is worth 2 points. If they reject the hammer, they concede the hole and its 1 point to their opponent. Both players can throw the hammer on as many holes as they wish. (Should both players decide to throw the hammer at the exact same time—something that can’t be planned in advance—the hole is worth 2 points.)
The first player to reach 3 points wins the match. Suppose all players always make rational decisions to maximize their own chances of winning.
Good news! You have won the first hole, and now lead 1-0. What is your probability of winning the match?

And for extra credit:

Instead of playing to 3 points, now the first player to 5 points wins the match.
Good news (again)! You have won the first hole, and now lead 1-0. What is your probability of winning the match?

Highlight to reveal (possibly incorrect) solution:

Program.

And for extra credit: