4 søstre og 1 havudsigt

Anmeldelse af “The Four Sisters Overlooking the Sea” (gratis, hvis linket stadig virker), af #NaomiKritzer. (Link nedenfor.) Langnovelle. 2024. Hugo-finalist.

Skitse: Hun er vel sådan set mest en husmor, der fx kører datteren til og fra teatret, når der er en musical på tapetet. Hun er gift med en karriere-akademiker, der typisk lader hende redigere sine artikler, før de bliver offentliggjort. Omend ordet “redigere” her omfatter at skrive det meste af teksten … Så bor de også i nærheden af en klippeformation, man heromkring kalder de 4 søstre.

Er det science fiction? Nej da. Fantasy.

Temaer: Hun havde også selv en akademisk karriere, hvor hun studerede sæler. Og det er altså underligt, men selvom hun er flyttet meget langt, så er der stadig de samme sæler ved vandet?

Hvis det ikke allerede fremgår tydeligt: ægtemand = r*vhul.

Er det godt? Jeg føler absolut med hende. Yeah, kvinder der gør fremskridt i verden. 👽👽👽

***

“The Four Sisters Overlooking the Sea”

Videobroderskabet

Anmeldelse af “The Brotherhood of Montague St. Video” (gratis), af Thomas Ha. (Link nedenfor.) Langnovelle. 2024. Hugo-finalist.

Clarkesworld

Skitse: I den her verden er det underligt, når en bog ikke kan zoome eller blive lysere. Det er også usædvanligt, at man endnu kan få konverteret en gammel video, uden at få den redigeret.

Er det science fiction? Ja.

Temaer: Selvfølgelig er der fordele ved de elektroniske bøger. Gammeldags ord kan blive opdateret, og man kan justere lysstyrken. Men (som sædvanlig?) har det taget overhånd. En trist slutning bliver “opdateret”.

Her er et anstrøg af Fahrenheit 451.

Det næste er så, når personlige minder bliver ændret. Fordi hvem gider have en familievideo, der er trist?

For den sags skyld bliver hele livet set gennem briller, der lige hæver det generelle niveau på alting. Kærestens ansigt bliver lidt kønnere.

Livet bliver mindre kompliceret. Mere kedeligt.

Citat: “What is it these people want? What is it these people need? Are they striving toward one, or the other, with what they do each day?”

Er det godt? Den nye verden, hvor bøger ikke bliver brændt, bare justeret. Oh. Ikke helt kreativt nok til at imponere mig. 👽👽☠️

***

“The Brotherhood of Montague St. Video” by Thomas Ha

Livstegn

Anmeldelse af “Signs of Life” (gratis), af Sarah Pinsker. (Link nedenfor.) Langnovelle. 2024. Hugo-finalist.

Skitse: 45 år er længe nok. Nu er det på tide at opsøge sin søster og sige undskyld. Hun er ensom, hendes mand og 3 børn er døde, og kun Shane er tilbage.

Er det science fiction? Fantasy.

Temaer: Selvfølgelig handler det om Det Store Familieskænderi, at blive gammel, endelig få sagt undskyld osv.

Men der er noget mere. En dybere årsag til skænderiet. At søsteren kan noget, æhm, magisk. Og at hun har brug for hjælp, sådan som et ældre, ensomt familiemedlem kan have.

Citat: “I forgave you years and years and years ago. I tried to tell you at Father’s funeral, but I never managed to get near you. That’s when I understood that you still needed to forgive yourself, too. I think that’s what’s taken a little longer.”

Er det godt? Velskrevet. Det er ikke underligt med den her forfatter. Ca. halvvejs er der en afsløring, der nærmest gav mig et stød. Slet ikke så dårligt. 👽👽👽

***

“Signs of Life”, Sarah Pinsker

Ensomhedsuniverset

Anmeldelse af “Loneliness Universe” (gratis), af Eugenia Triantafyllou. (Link nedenfor.) Langnovelle. 2024. Hugo-finalist.

Skitse: Nefeli beslutter at kontakte en gammel ven, hun ikke rigtig har forbindelse med mere. De aftaler at mødes ved et busstoppested, men et eller andet går galt.

Er det science fiction? Det er jo lidt en fortolkning. Men svaret kan godt være ja.

Temaer: Nefeli oplever i stigende grad, at hun ikke kan være i stue sammen med sine venner og bekendte. Helt bogstaveligt. Hun kan sende en tekst-besked til sin bror, og hun kan spise de chips, han lige har lagt på bordet, men derudover er det, som om han lige har forladt lokalet. For ham er det, som om hun lige er gået.

Fænomenet spreder sig, og videnskabsfolk prøver at finde årsagen. Nefeli har også et bud.

Det er her, det muligvis mere bliver symbolsk det hele. At dagsordenen er at skælde ud på folk, der fysisk er sammen, men faktisk har næsen i mobilen, hver for sig.

Er det godt? Jeg var spændt på slutningen, på opklaringen. Som altid er det lidt irriterende, når fortolkningen ikke er entydig. 👽👽☠️

***

“Loneliness Universe”, Eugenia Triantafyllou

Sjælesø(g)en

Anmeldelse af “Lake of Souls”, af Ann Leckie. Langnovelle. 2024. Hugo-finalist.

Skitse: Via at skifte ham har lille Spawn allerede været gennem faserne æg og larve og kan se frem til at blive rigtig voksen med et navn næste gang. Han er optaget af spørgsmålet om væsner uden sjæl.

Er det science fiction? Ja.

Temaer: Der er også et menneske, en antropolog, der studerer livet på den her fremmede planet. Han har ellers været frosset ned i lang tid, men nu er han her og prøver at undgå alt for tæt kontakt med de lyserøde kravlefiduser, mens han leder efter ekspeditionens ansible.

Spawn foretager en lang rejse. Da han støder på antropologen, er det afgørende, at de hver især kan se, at den anden har en taske. Taske = intelligens.

Er det godt? Det kører egentlig meget godt. Var det nødvendigt at have et menneske med? Jeg var spændt på slutningen. 👽👽👽

Ved salt, sø og stjerneskær

Anmeldelse af “By Salt, by Sea, by Light of Stars” (gratis), af Premee Mohamed. Langnovelle. 2024. Hugo-finalist.

Skitse: Firion kan stor magi! Men på det sidste har hun været lidt distraheret, fordi hendes magiske batterier er flade. Hun har ikke fået tjekket sin inbox, så det er en overraskelse, da der står en elev ved døren.

Er det science fiction? Nej da. Fantasy.

Temaer: Firion skal have det hele til at gå op i en højere enhed. Få sin magi tilbage, forhåbentlig. Uddanne eleven. Beskytte den nærliggende landsby mod en superdrage. Der bliver i hvert fald en historie ud af det.

(Det er sært, lige at have læst noget indviklet, hvor man skal lede efter meningen, og så læse noget, der er ret lige ud ad landevejen. Fordi det er jo bare forskelligt, ikke dårligt. Ikke?)

Er det godt? Det virker. Men nok ikke stor kunst. 👽👽☠️

#ThisWeeksFiddler, 20250704

This week the #puzzle is: Happy 100th Fiddler! #counting #permutations #triangles #parallelograms #dozo #flag

Dozo is a strategy game with a rather distinctive board:
The board features 28 holes in which players place markers, with the goal of making an equilateral triangle of any size with one color.
How many distinct equilateral triangles can you find whose vertices are the centers of holes on the board? (If two triangles are congruent but have different vertices, they should still be counted as distinct.)

And for extra credit:

Happy Fourth of July! In celebration of America’s birthday, let’s count more shapes—not in a board game, but in the American flag:
In particular, consider the centers of the 50 stars depicted on the flag. How many distinct parallelograms can you find whose vertices are all centers of stars? (If two parallelograms are congruent but have different vertices, they should still be counted as distinct.)

Highlight to reveal (possibly incorrect) solution:

Program Handcount 1 and 2

And for extra credit:

Program

***

For the 3rd time I’ve come back to weaving the web. This time because a friend kindly helped me turn a 3d object file into a physical object:

#ThisWeeksFiddler, 20250627

This week the #puzzle is: Can You Crack the Roman Code? #combinations #recursion (Link at the bottom.)

You are breaking into a vault that contains ancient Roman treasure. The vault is locked, and can be opened via a modern-day keypad. The keypad contains three numerical inputs, which are (of course) expressed using Roman numerals: “I,” “II,” and “III.”
It’s a good thing your accomplice was able to steal the numerical key code to the vault. Earlier in the day, they handed you this code on a scroll of paper. Once at the keypad, you remove the scroll from your pocket and unfurl it. It reads: “IIIIIIIIII.” That’s ten vertical marks, without any clear spacing between them.
With some quick mental arithmetic, you realize the combination to unlock the door could be anywhere from four digits long to 10 digits long. (Or is it IV digits to X digits?) How many distinct combinations are possible? If two combinations use the same numbers but in a different order, they are considered distinct.

And for extra credit:

Having successfully hacked your way through the first keypad, the door opens to reveal a second door with yet another keypad that has eight numerical inputs: “I,” “II,” “III,” “IV,” “V,” “VI,” “VII,” and “VIII.”
You were expecting this, which is why your accomplice had handed you a second scroll of paper. You unfurl this one as well, hoping they remembered to add spaces between the numbers.
No such luck. This paper reads: “IIIVIIIVIIIVIII.” That’s 15 characters in total. How many distinct combinations are possible for this second door?

Highlight to reveal (possibly incorrect) solution:

Tribonacci numbers Program

And for extra credit:

Spreadsheet

***

Last week I actually didn’t do that well. I made a lot of assumptions, and some of them were wrong. In both puzzles my pass no. 2 didn’t correspond with the official solution. I’ve discovered, that for the fiddler this happened, because I made a mistake in my calculations. The area of my tilted 2nd pass is not 1.0472, but 0.7585. Oops.

***

Can You Crack the Roman Code?

#ThisWeeksFiddler, 20250620

This week the #puzzle is: How Greedily Can You Mow the Lawn? #geometry #area #volume #GreedyAlgorithm (Link at the bottom.)

You’re mowing a circular lawn with a radius of 1 unit. You can mow in straight strips that are 1 unit wide.
The fewest number of passes you would need to mow the entire lawn is two, as shown below. In one pass (shown in blue) you can mow half the circle, and in the second pass (shown in red) you can mow the other half of the circle.
However, instead of minimizing the number of passes, you greedily choose how to orient each pass so it cuts as much of the unmowed grass as possible. A pass doesn’t have to go through the center of the circle and can be in any direction, but must be straight and cannot bend.
With this “greedy” approach, how many passes will it take for you to mow the entire lawn?

And for extra credit:

Instead of mowing a two-dimensional lawn, now you’re boring cylinders through a three-dimensional unit sphere. Each cylinder has a diameter of 1 (and a radius of 1/2).
Once again, you are greedily choosing the orientation of your boreholes so that they carve out as much of the remaining sphere as possible with each pass.
With this “greedy” approach, how many passes will it take for you to pulverize the entire sphere?

Highlight to reveal (possibly incorrect) solution:

Desmos 1

And for extra credit:

Desmos 2 Researchgate

***

How Greedily Can You Mow the Lawn?

#ThisWeeksFiddler, 20250613

This week the #puzzle is: Can You Race Against Zeno? #integration #summation #speed #distance #time (Link at the bottom.)

I’ve been experimenting with different strategies in 5000-meter races (known as “5K”s). If I run the distance at a steady pace, I’ll finish in precisely 23 minutes.
However, I tend to find a burst of energy as I near the finish line. Therefore, I’ve tried intentionally running what’s called a “negative split,” meaning I run the second half of the race faster than the first half—as opposed to a “positive split,” where I run a slower second half.
I want to take the concept of a negative split to the next level. My plan for an upcoming race—the “Zeno Paradox 5K”—is to start out with a 24-minute pace (i.e., running at a speed such that if I ran the whole distance at that speed, I’d finish in 24 minutes). Halfway through the race by distance (i.e., after 2500 meters), I’ll increase my speed (i.e., distance per unit time) by 10 percent. Three-quarters of the way through, I’ll increase by another 10 percent. If you’re keeping track, that’s now 21 percent faster than my speed at the start.
I continue in this fashion, upping my speed by 10% every time I’m half the distance to the finish line from my previous change in pace. (Let’s put aside the fact that my speed will have surpassed the speed of light somewhere near the finish line.)
Using this strategy, how long will it take me to complete the 5K? I’m really hoping it’s faster than my steady 23-minute pace, even though I start out slower (at a 24-minute pace).

And for extra credit:

I still want to run a negative split, but upping my tempo in discrete steps is such a slog. Instead, my next plan is to continuously increase my pace in the following way:
At the beginning of the race, I’ll start with a 24-minute pace. Then, wherever I am on the race course, I’m always running at a 10 percent faster speed than I was when I was twice as far from the finish line. Also, my speed should always be increasing in a continuous and smooth fashion.
(On the off chance you find more than one speed as a function of distance that satisfies all these conditions, I’m interested in seeing how. If only one such function exists, can you prove it? Regardless, my expectation is for the function to be as straightforward as possible.)
Using this strategy, how long will it take me to complete the 5K? Once again, I’m hoping it’s faster than my steady 23-minute pace, even though I started out slower.

Highlight to reveal (possibly incorrect) solution:

Desmos 1 – just to be confusing, the definition of tZeno1 here is slightly different.

And for extra credit:

Desmos 2

***

Can You Race Against Zeno?