This week the #puzzle is: Can You Hack #Bowling? #minimum #maximum #permutations
If you knock down 100 pins over the course of a game [of bowling], you are guaranteed to have a score that’s at least 100. But what’s the minimum total number of pins you need to knock down such that you can attain a score of at least 100?
And for extra credit:
You and your opponent each play a single game in which you both knock down the same number of pins. However, your scores are quite different.
Your opponent remarks, “Given only the information that we knocked down the same number of pins in our two games, there’s no way the difference between our scores could have been any greater!”
Given n pins, I can get a score of n points, and not lower. E.g. like this, n = 34:
0/10
0/10
0/10
0/4
0/0
0+10+0=10
10+0+10+0=20
20+0+10+0=30
30+0+4=34
34+0+0=34
0/0
0/0
0/0
0/0
0/0
etc.
For n > 100, there’s a twist at the end (1 extra bowl), e.g. n = 109:
0/10
0/10
0/10
0/10
0/10
0+10+0=10
10+0+10+0=20
20+0+10+0=30
30+0+10+0=40
40+0+10+0=50
0/10
0/10
0/10
0/10
0/10
9
50+0+10+0=60
60+0+10+0=70
70+0+10+0=80
80+0+10+0=90
90+0+10+9=109
And for n > 110, there’s are 2 small twists, at the end (2 extra bowls) and not quite at the end (9th frame, could be earlier though). n = 111:
0/10
0/10
0/10
0/10
0/10
0/10
0+10+0=10
10+0+10+0=20
20+0+10+0=30
30+0+10+0=40
40+0+10+0=50
50+0+10+0=60
0/10
0/10
0/9
10
10
2
60+0+10+0=70
70+0+10+0=80
80+0+9=89
89+10+10+2=111
Going all the way to n = 119:
0/10
0/10
0/10
0/10
0/10
0/10
0+10+0=10
10+0+10+0=20
20+0+10+0=30
30+0+10+0=40
40+0+10+0=50
50+0+10+0=60
0/10
0/10
0/9
10
10
10
60+0+10+0=70
70+0+10+0=80
80+0+9=89
89+10+10+10=119
This won’t work for n = 120, where the score is higher than 120.
0/10
0/10
0/10
0/10
0/10
0/10
0+10+0=10
10+0+10+0=20
20+0+10+0=30
30+0+10+0=40
40+0+10+0=50
50+0+10+0=60
0/10
0/10
0/10
10
10
10
60+0+10+0=70
70+0+10+0=80
80+0+10+10=100
100+10+10+10=130
Let’s look at the high scores.
Using the method at the top, I can get a score of 3n – 30 = 3(n – 10) for a lot of n, like n = 87. (The first 2 frames aren’t just tripled.)
10
10
10
10
10
10+10+10=30
30+10+10+10=60
60+10+10+10=90
… 120
… 150
10
10
10
7/0
0/0
… 180
180+10+10+7=207
207+10+7+0=224
224+7+0=231
231+0+0=231
Also n > 100, a little lower than 3n – 30. If n = 100 + a + b, where a < 10 => b = 0. Now the score is 270 + 2a + b. Like n = 103:
10
10
10
10
10
10+10+10=30
30+10+10+10=60
60+10+10+10=90
… 120
… 150
10
10
10
10
10
3/0
… 180
180+10+10+10=210
210+10+10+10=240
240+10+10+3=263
263+10++3+0=276
Or n = 111:
10
10
10
10
10
10
10+10+10=30
30+10+10+10=60
60+10+10+10=90
… 120
… 150
… 180
10
10
10
10
10
1
180+10+10+10=210
210+10+10+10=240
240+10+10+10=270
270+10++10+1=291
Clearly we’re looking for a high number of pins, to get a big difference between the numbers.
Pins
Max
Min
Diff
100
270
100
170
101
272
101
171
102
274
102
172
…
110
290
110
180
111
291
111
180
…
119
299
119
180
120
300
130
170
Given this information, there can be no higher difference between scores than 180.
Given all this information I can actually go back to the fiddler and see if my assumptions hold up. In general the scores are like this, with f being the number of frames in a game (not counting extra frames because of spares/strikes at the end):
Pins
Max
Min
Diff
10f-m
30(f-1)-3m
10f-m
20f-30-2m
…
10f-1
30(f-1)-1*3
10f-1
20f-30-2*1
10f
30(f-1)
10f
20f-30
10f+1
30(f-1)+2*1
10f+1
20f-30+1
10f+2
30(f-1)+2*2
10f+2
20f-30+2
…
10f+10
30(f-1)+10*2
10f+10
20f-30+10
10f+10+1
30(f-1)+10*2+1
10f+10+1
20f-30+10
…
10f+10+9
30(f-1)+10*2+9
10f+10+9
20f-30+10
10f+10+10
30(f-1)+10*2+10
10f+10+10
20f-30
If m = 56 in the 1st row, we get 30*9 – 3*56 = 102 as max. This is with 10*10-56 = 44 pins. Fiddler confirmed. (If m = 57, the max score is 99, and the higher m is, the lower the score is.)
Note that I haven’t really talked about the lowest scores. Like, with 9 pins in all, you get a max and min score of 9.
Now that my predictions only depend on f, I can make a toy example, with f being 2, 3 or 4, to see if my assumptions hold up. For this I make a program. Everything is confirmed.