Problem 10, MMP

🇩🇪 Struve🇺🇲 Clagett
XVIII, 1Form der Berechnung eines Korbes (nb.t),Example of calculating a basket[assumed by Struve as hemispheric in shape]
2wenn man dir nennt einen Korb mit einer Mündung (tp-rз)If someone says to you: “A basket with a mouth opening
3zu 4 1/2 in Erhaltung. Oof 4 1/2 (i.e., a diameter of this size) in good condition , oh
4laß du mich wissen seine (Ober)fläche. Berech-let me know its [surface] area .”
5ne du 1/9 von 9, weil ja der Korb (nb.t)[First] calculate 1/9 of 9, since the basket is
6die Hälfte eines Eies ist. Es entsteht 1.1/2 of an egg-shell (? inr?). The result is 1.
XIX, 1Berechne du den Rest als 8.Calculate the remainder as 8.
2Berechne du 1/9 von 8.Calculate 1/9 of 8.
3Es entsteht 2/3 1/6 1/18. Berech-The result is 2/3 1/6 1/18. Cal-
4ne du den Rest von dieser 8 nachculate the remainder from these 8 after
5diesen 2/3 1/6 1/18. Es entsteh[t] 7 1/9.taking away those 2/3 1/6 1/18. The result is 7 1/9.
XX, 1Rechne du mit 7 1/9 4 1/2mal.Reckon with 7 1/9 four and one-half times.
2Es entsteht 32. Siehe: es ist seine (Ober)fläche.The result is 32. Behold, this is its area.
3Du hast richtig gefunden.You will find that it is correct.

Struve:

  • … die Berechnung der Oberfläche einer Halbkugel …
  • O: die Oberfläche der Halbkugel.
  • d: den Durchmesser der “Mündung in Erhaltung”, d.h. der größten Kreises der Halbkugel.
  • O = [ (2d – 2/9 d) – 1/9 (2d – 2/9 d) ] * d
  • O = 1/2 d π d
  • x = π/4 = (8/9)2, Annäherung
  • A: Halbkreisumfang.
  • A = (2d – 2/9 d) – 1/9 (2d – 2/9 d)
  • A = (2d – 2/9 d)(1 – 1/9)
  • A = 2d (1 – 1/9) (1 – 1/9)
  • A = 2d (8/9)2
  • A = 2d x

🇩🇪 Lise:

  • Information
    • M = 4 1/2, Mündung, Diameter
    • O = Oberfläche von Halbkugel (🇺🇲 surface area)
    • O = 2 π r2
    • r = Radius, M/2
    • π/4 = (1 – 1/9)2
  • π = 4 (1 – 1/9)2
  • O = 2 π r2
  • O = 2 * 4 (1 – 1/9)2 (M/2)2
  • O = 2 (1 – 1/9)2 M2
  • O = 2M (1 – 1/9)2 M
  • O = 2M (1 – 1/9) (1 – 1/9) M
  • O = (2M – 1/9 2M) (1 – 1/9) M
  • O = (2 * 4,5 – 1/9 * 2 * 4,5) (1 – 1/9) 4,5
  • O = (9 – 1/9 * 9) (1 – 1/9) 4,5
  • O = (9 – 1) (1 – 1/9) 4,5
  • O = 8 (1 – 1/9) 4,5
  • O = (8 – 8 * 1/9) 4,5
  • O = (8 – 8/9) 4,5
  • O = 7 1/9 * 4,5
  • O = 32
🇬🇧 Peet🇬🇧 Peet
1Example of working out a semicircle.Example of working out a semi-cylinder.
2If they say to you, A semicircle <of 9> in diameterIf they say to you, A semicircle <of 9> in diameter
3by 4 1/2 in height, prayby 4 1/2 in height, pray
4let me know its area. You are tolet me know its area. You are to
5take a ninth of 9, since a semicircletake a ninth of 9, since a semi-cylinder
6is half a [circle], result 1.is half a [cylinder], result 1.
7Take the remainder, namely 8.Take the remainder, namely 8.
8You are to take a ninth of 8,You are to take a ninth of 8,
9result 2/3 + 1/6 + 1/18. You are to takeresult 2/3 + 1/6 + 1/18. You are to take
10the remainder of the 8 after (subtracting)the remainder of the 8 after (subtraction of)
11the 2/3 + 1/6 + 1/18, result 7 1/9.the 2/3 + 1/6 + 1/18, result 7 1/9.
12You are to take 7 1/9 4 1/2 times,You are to take 7 1/9 4 1/2 times,
13result 32. See, this is its area.result 32. See, this is its area.
14You will find it correct.You will find it correct.

PrevNext
09Clagett11
04Struve